Increased susceptibility to microdamage in Brtl/+ mouse model for osteogenesis imperfecta.
نویسندگان
چکیده
Osteogenesis imperfecta (OI) is a genetic disease of collagen or collagen-related proteins that adversely impacts bone mass and fracture resistance. Little is known regarding the role that microdamage plays in OI and whether or not OI bone is more prone to damage accumulation than bone with unaffected collagen. The Brtl/+ mouse is a heterozygous model for OI which contains a Gly349Cys substitution in one COL1A1 allele, and demonstrates a low ductility phenotype. At 8 weeks of age, Brtl/+ demonstrates an increase in osteoclast number, which mimics the upregulated bone turnover often found in OI patients. We hypothesize that upregulated osteoclast activity in Brtl/+ is due, in part, to increased remodeling associated with microdamage repair. In the present study, we used Brtl/+ to investigate the susceptibility of OI bone to microdamage. The mouse ulnar loading model was used to induce microdamage and to test the hypothesis that Brtl/+ is more susceptible to damage accumulation than age-matched wild type (WT) counterparts. Linear elastic fracture mechanics (LEFM) was used to investigate the fracture toughness properties of both Brtl/+ and WT bones to determine if there is any correlation with toughness and the degree of microdamage. Results show that Brtl/+ ulnae subject to normal cage activity demonstrate an inherently larger amount of microdamage than WT controls. Following axial compressive loading, Brtl/+ ulnae are more prone to damage than WT counterparts despite demonstrating a greater resistance to whole-bone deformation. Fracture toughness results demonstrate that Brtl/+ specimens, despite not exhibiting a significant difference, display a trend toward lower fracture toughness values than their WT counterparts. Correlations show that microdamage levels tend to increase as fracture toughness decreases. Together, these findings may have strong clinical implications for explaining increased fragility and remodeling activity in OI patients.
منابع مشابه
Alendronate treatment of the brtl osteogenesis imperfecta mouse improves femoral geometry and load response before fracture but decreases predicted material properties and has detrimental effects on osteoblasts and bone formation.
Long courses of bisphosphonates are widely administered to children with osteogenesis imperfecta (OI), although bisphosphonates do not block mutant collagen secretion and may affect bone matrix composition or structure. The Brtl mouse has a glycine substitution in col1a1 and is ideal for modeling the effects of bisphosphonate in classical OI. We treated Brtl and wildtype mice with alendronate (...
متن کاملMineral and Matrix Changes in Brtl/+ Teeth Provide Insights into Mineralization Mechanisms
The Brtl/+ mouse is a knock-in model for osteogenesis imperfecta type IV in which a Gly349Cys substitution was introduced into one COL1A1 allele. To gain insight into the changes in dentin structure and mineral composition in these transgenic mice, the objective of this study was to use microcomputed tomography (micro-CT), scanning electron microscopy (SEM), and Fourier transform infrared imagi...
متن کاملFracture Healing with Alendronate Treatment in the Brtl Model of Osteogenesis Imperfecta
INTRODUCTION Osteogenesis Imperfecta (OI) is a genetic disease typically related to a mutation in the genes encoding type I collagen. OI patients experience a high incidence of fractures during childhood and adolescence. Bisphosphonates have been used in an effort to prevent or reduce the number of fractures. While prior studies have investigated the effect of bisphosphonate treatment on fractu...
متن کاملNanoscale morphology of Type I collagen is altered in the Brtl mouse model of Osteogenesis Imperfecta.
Bone has a complex hierarchical structure that has evolved to serve structural and metabolic roles in the body. Due to the complexity of bone structure and the number of diseases which affect the ultrastructural constituents of bone, it is important to develop quantitative methods to assess bone nanoscale properties. Autosomal dominant Osteogenesis Imperfecta results predominantly from glycine ...
متن کاملIn utero transplantation of adult bone marrow decreases perinatal lethality and rescues the bone phenotype in the knockin murine model for classical, dominant osteogenesis imperfecta.
Autosomal dominant osteogenesis imperfecta (OI) caused by glycine substitutions in type I collagen is a paradigmatic disorder for stem cell therapy. Bone marrow transplantation in OI children has produced a low engraftment rate, but surprisingly encouraging symptomatic improvements. In utero transplantation (IUT) may hold even more promise. However, systematic studies of both methods have so fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bone
دوره 50 3 شماره
صفحات -
تاریخ انتشار 2012